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T
he first step in a finite-element
analysis selects a mathematical
model to represent the object being
analyzed. The term mathematical

model refers to a theory such as the the-
ory of elasticity, the Reissner theory of
plates, or deformation theory of plastic-
ity, and to the information that defines
the problem — geometric descriptions,
material properties, as well as con-
straints and loading. 

The analysis goal is to compute in-
formation from the exact solution
u_EX and then calculate information
from it such as the maximum von
Mises stress, which could be F(u_EX).
The function F(u_EX) depends only on
the definition of the mathematical
model and not on the method used for
finding an approximate solution.
Therefore, it does not depend on mesh
quality, type, and size of elements. The
difference between F(u_EX) and the
physical property it represents is called
the “modeling error”.

The next step uses the finite-element

method to find an approximation u_FE
of the exact solution u_EX. This in-
volves selecting a mesh and elements
such as 2D plates, eight-node bricks, p-
elements, and so on. The mesh and ele-
ments define what’s called the finite-el-
ement discretization.

Discretization error is defined by

Most analysts would like to hold this
value to no more than 10%. But model-
ing and discretization introduce errors.
Proper application of the art and sci-
ence of FEA involves assessing and
controlling these two types of errors.
It’s also a good idea to distinguish be-
tween apparent and real errors in FEA
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results. By definition:

The apparent error can be less than
the sum of modeling error and dis-
cretization error. The two errors can
have opposite signs and may nearly
cancel. The quality of results depends
both on how well the model represents
reality (the size of the modeling error)
and how accurately the FEA software
handles the transformations (the size of
the discretization error).

WHAT IS MODELING ERROR?
Suppose one wishes to analyze a sup-

port bracket. Questions that come to

E E E

E E E

apparent modeling discretization

true modeling discretization

= +

≤ +

MACHINE DESIGN 93http://www.penton.com/md SEPTEMBER 25, 1997

CAD EDITED BY PAUL DVORAK

How to find errors 
in finite-element models

A linear solution for a bracket model indicates 25,609-psi stress from 20,000-lb load. But are
the results accurate? One way to find out gradually relaxes the restrictive modeling assumptions
in hierarchical models to let users judge the quality of results by  comparing data produced from
subsequent models.

R=0.5 in.

Von Mises stresses
for a linear analysis



mind include: What do we want
to find? Maximum stress? Maxi-
mum deflections? The first few
natural frequencies? The bend-
ing stiffness? Temperature dis-
tribution? Does the bracket re-
main in the elastic range? How
many loading conditions are
critical? How should we repre-
sent support conditions?

With a clear objective and an
understanding of the limitations
inherent in the theory being
used, analysts can create the
model geometry. At times this
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How to ‘relax’
a finite-element model
Several finite-element models show how
easy it is to make bad modeling decisions
and how to control modeling errors using
a systematic approach. To simplify con-
vergence-error analysis, the models are
run in p-element FEA software.  

Consider a cantilever plate of a constant
thickness supported by four bolts. The
right edge is loaded with a normal pres-
sure. Find the distribution of von Mises
stress in the plate.

To model the cantilevered plate, an engi-
neer might argue that the bolt diameter is
small in relation to the plate, so bolts-as-
point supports is a reasonable simplifica-
tion. Models based on these assumptions
will provide results from a single run
which may seem correct because large dis-
cretization errors mask the modeling error
(point supports). Any finite-element solu-
tion corresponding to a particular mesh
and polynomial degree of element will re-
port a finite stresses. However, the sketch
How a bolt hole deforms shows that refin-
ing the h-element mesh or increasing the
polynomial order of the p-elements
around the bolts reveals increasingly large
strains concentrated around the point con-
straints. 

The graph Displacement versus DOF
shows that in the limit (increasing DOF),
the strains will be infinite on an area of
zero size. Hence, the displacement of the
loaded edge will be infinite. 

Had one applied a prescribed displace-
ment instead of the normal pressure to

How a bolt hole deforms

Before 
loading

 After
 loading

The sketch indicates
a deformed shape in
the cantilever plate
at bolt F2 magnified
100 times. Bolts are
modeled with point
constrains and the p-
element order
reaches eight. The
underformed hole
appears under the
deformed shape.

Bolts are modeled by point constraints.
Maximum displacement

Displacement vs DOF
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Analysis of the can-
tilever plate is
performed by the p-
element software
StressCheck. The
graph indicates no
convergence in
maximum displace-
ment with an
increase in degrees
of freedom. This is
one indicator that
something is amiss
with the model.

Model 1: A cantilever plate
Line of symmetry

Line of symmetry

22

1
1

1 2

F2

Four bolts fasten the can-
tilever plate. The material is
ASTM A36 steel, E = 293
106 psi, Poisson’s ratio =
0.295, yield stress Sy =
36.03103 psi. Assume
plane stress conditions. The
plate is 0.2-in. thick and
fasteners are 0.4-in.
diameter. Uniformly distrib-
uted traction of 1.5 3 104

psi is applied on the right
edge.



geometry may be similar to the CAD
geometry, but quite often we find it nec-
essary to modify the topological de-
scription to simplify meshing. Part of
the modeling process includes making
decisions such as modeling thin walls
with shell elements, taking advantage of
symmetry or asymmetry or both, includ-
ing or neglecting fillets, and deleting
nonessential features. For example, de-
ciding to use shell elements rather than
solid elements means one makes an im-
portant decision concerning the mathe-
matical model and hence the kind of op-
erations the FEA software will perform.

After idealizing the topological de-
scription, one still needs to idealize ma-
terial properties (select linear elastic,
elastic-plastic, or another), loads, and
supports. These decisions further de-
fine the mathematical problem, which
supposedly represents the bracket with
respect to the data of interest .

Important modeling decisions are
sometimes made without much con-
cern for their
implications. It
often happens
that the formu-
lated model is

conceptually wrong. An indicator of a
poor model comes when the strain en-
ergy corresponding to the exact solu-
tion is infinite or trivially zero. Another
indicator is when the data of interest,
corresponding to the solution of the
mathematical model, is not defined. Or,
when the solution is defined, it’s en-
tirely discretization (mesh) dependent.

Many analysts think that an efficient
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the right edge, reactions at the bolts would be zero at
the limit as shown in Loads from displacement. The
modeling error here is the use of point constrains
which are incapable of generating nonzero reactions
in the linear theory of elasticity. The numerically de-
termined value of the reactions may look credible but
it is completely dependent on the finite-element mesh
and, therefore, unreliable. Running just one solution
would not reveal the cardinal modeling error because
it is masked by the discretization error. The point of
the exercise is that convergence analysis is also a use-
ful tool for spotting modeling errors, in this case the
point supports.

A second model of the cantilevered plate tries to alle-
viate the problem of point supports by using linearly dis-
tributed springs for bolts around the four bolt holes. The
spring rate of 3.0 3 108 lb/in. represents the elasticity of
bolts. The material behavior is linear and the circular
mesh around each hole has an 0.8-in. diameter.

The results from Model 2: Springs for bolts shows
maximum von Mises stresses of 61,600 psi. The p-code
also delivers a convergence error analysis, so users can
be sure the solution is sufficiently accurate. In this case,
the discretization error is below 1% error in energy
norm.

But how good are the reported stresses? Results show
at least two problems. First, the maximum stress reads
61,600 psi while the yield stress for the plate material
suggests values should not exceed 36,000 psi. For this
reason, the cutoff point for the fringe plot is 36,000 psi.
Because yielding has not been considered, the stress dis-
tribution shown cannot be representative of the true
stress distribution, even though the error of discretiza-
tion is small.

The second problem found on closer examination of
stress results is that there are tensile stresses along portions
of the circumference of the fastener holes. But tensile stress
has no chance to develop along the plate-bolt contact area,
hence the fastener-support model cannot be correct.

Both problems stem from the assumption that the can-
tilever plate can be modeled as a linear problem. In fact,
stress above the yield point requires a model accounting for
material nonlinearity while contact between bolts and plate

The distribution of von Mises stresses has been pro-
duced around the bolt holes by the linear model.

MODEL 2: SPRINGS FOR BOLTS

Load from displacement  vs. DOF
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Another indicator of a faulty model comes by plotting the reaction forces at
the bolts versus the number of DOF when the prescribed displacement is
applied to the right edge of the plate. The graph indicates that reaction at
the bolts converges to zero, an illogical conclusion. 



mesh generator reduces modeling error
with a high quality mesh. It does not.
Modeling assumptions are made before
meshing. Consequently, even the best
mesh cannot fix an improperly defined
mathematical model. 

A SYSTEMATIC APPROACH
The only way to ensure small mod-

eling errors is by showing that the data

of interest are not sensitive to restric-
tive modeling assumptions. This is
analogous to ensuring the discretiza-
tion errors are small by showing that
the data of interest are not sensitive to
discretization (results do not signifi-
cantly change with finer mesh or
greater p value). For example, when
one is interested in shearing forces
along the edge of a simply supported

plate, the classical plate model (Kirch-
hoff’s plate) is unreliable. The unrelia-
bility is easily detected by using a
Reissner model or a full 3D model of
elasticity. A Reissner model of a plate
in bending assumes that all in-plane
displacements vary linearly across the
thickness and that shear strains are
constant across the thickness. Using
higher plate models forces one to think

about the meaning of a simple sup-
port, and whether or not it provides
an accurate description of a physi-
cal system.
To control modeling errors in a sys-
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calls for a model capable of representing mechanical contact.
A third model of the cantilever goes beyond these mod-

eling errors. It accounts for the plastic yield occurring at
36,000 psi by modeling elastic-plastic material and for the
nature of contact between bolt and the plate by modeling

“compression only” distributed
springs. The illustration Model 3:
An elastic-plastic model shows a
corresponding von Mises stress
pattern. Maximal stress now stays
at 36,000 psi, as it should, and ten-
sile stresses along the bolt circum-
ferences are gone. Since one now
has the results of a nonlinear
analysis, one can inspect the extent
of plastic zones in Model 3: Plastic
zones.

The difference in results from
the linear and nonlinear model

show how misleading the linear model could have been.
But is the nonlinear model good enough? This depends on
whether our modeling assumptions hold. Is the material re-
ally elastic-plastic, or is a more sophisticated material
model needed? Can bolts be represented by compression

springs? If so, what is the spring rate? And how about
a different fit for each of the four bolts? Is the 2D
plane-stress assumption realistic? The list could go
on.

The p-code used can represent interference-fitted
and loose-fitted fasteners. Many studies indicate the
plane-stress assumption is a realistic representation
for fastened membranes.

For a second example, suppose one needs to find
the maximum load a bracket can hold. Its material is
the same as the cantilever plate. A bracket model of
linear elements is “smooth” shaped without analyti-
cal problems such as singularities. It solves easily to
a convergence error below 1% in energy norm. The
illustration Von Mises stresses for a linear analysis
shows a load of 20,000 lb producing the maximum
von Mises stress of 25,609 psi. By simply scaling the
load, one finds that 28,115 lb produces the yield
stress of 36,000 psi and therefore plastic yielding.

A second bracket model has been updated to ac-

The distribution of
von Mises stresses
produced by the
nonlinear model
appears consider-
ably different from
linear model. The
nonlinear solution
accounts for
geometric as well
as material nonlin-
earities. The model
uses springs for
bolts and engages
them only in com-
pression.

The plot shows regions where the equivalent strain
exceeds the yield strain of 1.2414 3 10-3.

MODEL 3: AN ELASTIC-PLASTIC MODEL

MODEL 3: PLASTIC ZONES



tematic way, one needs a hierarchic
point of view. A well-defined mathe-
matical model should be viewed as a
special case of a more general mathe-
matical model. For example, a model
based on the linear theory of elasticity
is a special case of a model that ac-
counts for geometric or material non-

linearities, or both. Similarly, the
Reissner theory of plates is a special
case of the full 3D representation, with
infinitely many possible plate models
in-between. When the maximum von
Mises stress turns out to be larger than
the yield point of the material, then a
model based on the linear theory of

elasticity is inappropriate. Consider a
higher model, one that uses a more
complex theory to imitate the real
world. In any case, the linear model
should be viewed only as the first step
in solving a nonlinear one.

It has been difficult to control mod-
eling errors in practice, with hierarchic
models because most FEA codes link
the element definition and underlying
theory. For example, element libraries
may describe an element as “20-node,
triquadratic displacement, trilinear
temperature, hybrid, linear pressure,
reduced integration.” Changing the

count for nonlinear material behavior to see how relaxing
the restrictive assumptions of a linear material changes re-
sults. Because load scaling cannot be used on a nonlinear
model, one needs several solutions with increasing load un-
til the entire bracket cross-section develops stress above the

limit of plasticity. Elastic-plastic
Analysis shows that a 70,000-lb load
does not stress all material beyond the
elastic limit, indicating the bracket can
carry the weight. 

So the question becomes: What’s a
good estimate of the ultimate load,
28,115, or 70,000 lb? It’s clearly closer
to the latter, but to be sure, one needs to
improve the modeling assumptions.
The elastic, perfectly plastic material

should be replaced with a more realistic model along with
assumptions of geometric linearity (small strains and dis-
placements) and more realistic support conditions. Never-
theless, assuming sufficiently strong supports, 70,000 lb
can be reported as a conservative estimate of the ultimate

load-carrying capacity. Strain harden-
ing will increase this figure.

The objective of both exercises is not
necessarily to come up with the perfect
model, but rather illustrate how to deal
with modeling errors in a way that
gradually relaxes restrictive simplify-
ing modeling assumptions. Then users
can examine the difference the as-
sumptions make to the data of interest. 

The hierarchical approach to control-
ling modeling errors can be automated
in special cases like plate analysis in
which a series of models are formu-
lated with progressively less restrictive
assumptions. A later article will exam-
ine hierarchical plate models.
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Sizing up the bracket

R

P=shear  load around the hole

All dimensions in inches
Material:  E=303106 psi 
                v = 0.3
shear yield = 36,000 psi

12.0

2.0

2.0

12.0

10.0
6.72

7.0

The bracket carries its load in
shear around the hole. 

A nonlinear solution accounts for
elastic-plastic material properties.
At a 70,000-lb load, some material
remains in the elastic range.

R=0.5 in.



model involves changing the element,
which increases the complexity of the
task. Modeling errors are not even con-
sidered in most cases because of the
usual tight time constraints on analysis
and a high level of expertise needed for
properly executing the necessary com-
putations.  

A systematic approach to controlling
modeling errors lags behind other FEA
developments. It has been put in com-
mercial FEA software only recently in
a code called StressCheck from ESRD,
St. Louis. It automatically assesses
both modeling and discretization er-
rors. The package separately handles
the topological description of elements,
their polynomial degree, and the under-
lying theory. For instance, a hierarchic
family of models is available for
isotropic and laminated plates in bend-
ing. The lowest member of the hierar-
chy is the Reissner model, the highest
is a 3D representation. By repeating
calculations using progressively higher
hierarchic models, one can gradually
“relax” modeling assumptions until the
results no longer change significantly.

MODELING ERRORS FROM
CONVERGENCE TESTS

Convergence analysis calculates dis-
cretization errors by increasing the
number of degrees of freedom (dof) in
the model by refining the mesh in h-
codes or increasing element orders in
p-codes. In fact, any FEA result should
be produced by a convergence process
rather than by a single solution. This
understanding is more practical with
programs based on p-element technol-
ogy that makes convergence testing a
part of every solution, such as Pro/Me-
chanica, StressCheck, and other p-
codes.

A convergence test may also work as a
spotter for particular  modeling errors
called singularities which may be
masked by the discretization error. How-
ever, singularities start showing up when
one examines how data of interest
change after increasing the number of
degrees of freedom. When data of inter-
est do not appear to approach limiting
values, then either the discretization is
still too large (too few elements or too
low p-order) or the model is not defined

properly, or both.
Numerical convergence tests, how-

ever, do not always detect singularities
and cannot be considered a foolproof
singularity spotter. Should the data of
interest diverge slowly, it may be diffi-
cult or impossible to detect by numeri-
cal means. The situation is analogous to
computing the sum:

The sum is infinite at the limit. How-
ever, when one replaces the upper limit
by a large number, say 1 million, com-
puting the sum for 1 million plus 1 pro-
duces a negligible change in relation to
the sum. It appears to converge. In the
end, it is the analyst who must know
whether the data of interest correspond-
ing to the exact solution is finite or not.

HAZARDS OF COMPARISONS
Correlation with experiments pro-

vides an obvious and useful way to ver-
ify a wide range of modeling assump-
tions, and may help detect various
modeling errors including singularities.
But good correlation can be misleading
and does not necessarily prove that the
model is correct. Why? Because FEA
results combine effects of two errors:
the modeling and discretization error,
which may nearly cancel each other,
producing seemingly correct results.
Suppose one wants to find the deflec-
tion of a beam supported at two points
representing small rollers. A concep-
tual error arises by using point supports
to represent rollers when the model is
based on the theory of elasticity. De-
flections under point support are infi-
nite, so the FE model with many DOF
will overestimate deflection. 

At the same time, a coarse mesh pro-
duces a large discretization error mask-
ing the conceptual error by underesti-
mating deflections. A credible result
may be produced in that the deflection
will be almost as if a roller support were
properly modeled. By chance, deflec-
tions reported by the model may be quite
close to what one would see in a test.

But two mistakes do not make it right.
Such models are unreliable for comput-
ing stresses and reactions. Manipulating
the mesh so the computed data match
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experimental observations is a widely
practiced but bad idea. To properly eval-
uate and interpret results of an experi-
ment, the errors of discretization must
be smaller than the errors in experimen-
tal observations and the magnitude of
discretization errors must be verified in-
dependently by the experiment. ■
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A brief check list of
modeling errors 
To ensure the data of interest are ac-
curate, ask yourself these questions
about your model:
• Is the model properly conceived

with respect to the data of
interest? 

• Is the strain energy of the exact
solution finite and not zero?

• Are the data of interest finite?
• Is the estimated relative error in

energy norm (not the strain
energy) reasonably small, about
5% or less?

• Are the data of interest converg-
ing to a limit as the number of
degrees of freedom increases?

• When stress maximums are of
interest, are the stress contours
smooth in the highly stressed
areas?

When answers to these questions
are affirmative, one can be reason-
ably certain that modeling and dis-
cretization errors are small. Of
course, it is still necessary to test for
sensitivity to modeling decisions,
that is, by relaxing the assumptions
as demonstrated in the examples.
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